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Abstract. We present three analytically tractable models for a two-level atom interacting 
with a coherent or thermal radiation field and study the behaviour of the atomic excitation 
energy for various initial conditions. 

1. Introduction 

It has recently been demonstrated (Eberly et a1 1980, Narozhny et a1 1981) that the 
dynamical behaviour of a two-level atom coupled to a coherent radiation field shows 
interesting phenomena of decay and regeneration. The expectation value of the atomic 
energy operator (HA), in this simple example of an interacting system, was long thought 
to be an essentially decaying function of time; but Eberly and co-workers (Eberly et 
a1 1980) found by numerical methods that (HA) in fact revives many times to nearly 
its initial value. 

Eberly et al (1980) used the model of Jaynes and Cummings (1963) in which the 
time dependence of HA is determined by a frequency operator Q proportional 
to the square root of the number operator N for the radiation quanta. This obscures 
the periodic features inherent in such systems and we later proposed alternative models 
(Sukumar and Buck 1981, Buck and Sukumar 1981), in which s2 has a linear depen- 
dence on N, so that regeneration could be studied analytically for both coherent and 
thermal radiation. Here we give a fuller account of our work. 

In 0 2 we present several loss-free models for a two-level atom coupled to single 
mode radiation, show that the equations of motion are soluble, and investigate the 
circumstances under which the expectation values of suitable operators decay and 
revive. Section 3 contains a derivation of general expressions for the atomic energy 
expectation value when the initial radiation is either coherent or described by a thermal 
density matrix. In 9 4 the solutions of the equations of motion given in 9 2 are used 
to study the dynamics of atom and field evolving from different initial conditions and 
0 5 summarises our conclusions. 

We adopt essentially the same notation as in the preceding paper (Buck and 
Sukumar 1984) except that J, J3,  J, are replaced by the spin 4 operators S, S3, S, 
since we are here concerned only with two-level atoms. 

2. Models 

2.1. Basic relations 

We consider an atom with energy levels * ( + E )  coupled to a single radiation mode of 
unit frequency. In terms of spin-; operators S the atomic Hamiltonian is represented 
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by &S3 while transitions are described by S ,  = SI * is2. The field energy is taken to be 
a t a  = N, the number operator for oscillator phonons, and the various models we discuss 
are distinguished by the types of coupling allowed and the number of field quanta 
mediating an atomic transition. 

The non-vanishing equal time commutators are 

[s+, s-]= 2s3, rs3, S*l= fS*, [ a ,  a + ] =  1 ,  ( 1 )  

s2 = t ,  
s+s- = s2 - s: + s3 = $+ s3, 
{ S + ,  s-) = 1 ,  

and the following algebraic and anti-commutator relations hold at all times 
si -1 - 4, 

s-s+=sz-s:-s 3 - 2 - s 3 ,  -I (2) 

is*, S3) = 0. 

The model Hamiltonians described below are designed to yield a fundamental 
frequency operator R which is a linear function of N. 

2.2. m-phonon transitions 

We begin with Hamiltonians of the form 

H = a'a + ( E  + p a t a ) S 3 + ( f A ) [ S + ( a ) "  (3)  
where E ,  p and A are constants and m is a positive integer denoting the number of 
phonons absorbed or emitted as the atom is excited or de-excited. These models differ 
from those considered by Sukumar and Buck (1981)  by the addition of a term pataS3 
which represents an intensity dependent level shift. The original Jaynes-Cummings 
(1963) model has j~ = 0 and m = 1. 

Using equations (1) and (2) we can write down the Heisenberg equations i d =  
[a, HI for various operators 0. It is useful to define a constant 

a = E - m  (4) 
measuring the amount of detuning from resonance, and the following subsidiary 
operator combinations: 

A = H - C +$pm,  B = ($A)[ S+( U ) "  - S-(  U + ) " ] ,  (5a ,  b )  

c = a a + mS3, (5c,  d )  

E = a + p C ,  F = ( C + $ m ) ( C + $ m - l ) .  . . ( C + l - $ m ) ,  ( 5 e , f )  

D = (;A)[ S+( a)" + S-( a t ) m ]  = A - ES3, 

where F has m factors altogether. The operators C, E and F commute with every 
term in H and are therefore constants of the motion. Clearly, A is also a constant 
operator. 

Thus on rewriting H in the form 

H = ( C  - $ p m )  + ES3+ D, 

and noting the relations 

Bl= 0, [S,, Dl = B, 
it is quickly verified that 

is, = B and iB=-ED+[B,D].  
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In an earlier paper (Buck and Sukumar 1981) it was shown that 

[B,  03 = A2FS3, (9) 

S3  + R2S3 = EA, (10) 

R2=E2+A2F. (11) 

so from equations (8) and ( 5 d )  we find the result 

where the effective frequency operator R is given by 

The equation of motion (10) for S,( t) involves only the constant operators E, A 
and R whose expectation values may be calculated at t = 0. Its general solution is 
easily seen to be 

S 3 ( t )  = S3(0) cosRt+(S,(O)/R) sinRt+(EA/R2)[1-cosRt],  (12) 

S 3 ( r )  = S3(0)-(iB(O)/R) sinRt+[(ED(0)-A2FS3(O))/R2][l-cosRt]. (13) 

which, using equations ( 5 ) ,  (8) and (31) may also be written as 

For the above type of Hamiltonian we now write down the special conditions under 
which R depends linearly on C, this leading to an analytic treatment of periodic decay 
and regeneration in the dynamics of ( S 3 ( t ) ) .  

Model 1 .  With 

m = 1 ,  

and 

A = 2( p - 2ap),  

we have 

a= f [ p ( C + l ) - a ] .  

Model 2. Putting 

m = 2  

and 

A 2 = 4 ~ ( a - p ) ,  

gives 

R =  * [ ( 2 a - p ) C + a ] .  

(14) 

(15) 

2.3. Intensity -dependent coupling 

A third model, with one-phonon transitions ( m = l )  and R linear in C, can be 
constructed from the modified Hamiltonian 

(20) fi = a ' a  + ( E  + p a t a ) S 3  + (+A )[ S+aJ& + S-&%at], 

which differs from the model of Buck and Sukumar (1981) by the presence of the 
term in p. Defining a = ~ - l ,  A=H-C+ap, C = a + a + S 3  and E = a + p C ,  the 

- -  
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equation of motion for S3 is 

s, + R2S3 = E A  

where 

f12 = E 2  + A 2( C +$)'. 

The general solution of equation ( 2 1 )  has the form 

S3( t) = S3(0) - (iB(O)/n) sin R t  + [ (ED(0)  - A 2 (  C +$)*S3(0))/fl2][ 1 -cos at], 
where 

B = ( $ A ) [ S + a J x -  S-&%at], 

and 

D = ($A)[S+a&%+ S-J&ut]. 

We now impose special constraints to obtain: 

Model 3. With 

m = l  

and 

p = 2a,  

giving 

R = *(A + C +$). 

2.4. Basis states 

The atomic states are denoted by IM), M = *$, and satisfy S,(O)(M) = MIM)  while 
the field phonon states In), n = 0 , 1 , 2 , .  . . ,are  eigenstates of ut(0)a(O) = N ( 0 ) .  Clearly 
the states 1n)lM) are eigenfunctions of the operator C,,, = u t a  + mS3 with eigenvalues 

(29) 

In later sections we shall need only diagonal matrix elements of S3 with respect to  

Y",M = ( n  + mM) 

so that the eigenvalues of Q(C,) are always linear functions ~ ( y , , ~ )  of yn,,,,. 

the states In)JM) and it is obvious from the definitions of B and D that 

(nMIB(0)InM) = 0 ,  (nMIED(0)InM) = O .  ( 3 0 )  
Hence the above operators may be dropped from equations ( 1 3 )  and (23 ) .  Also in 
these latter equations we shall denote the coefficients of S,(O) in the factors multiplying 
[l -cos at] by G, ( i  = 1 ,  2 ,  3 for the three models). They are given explicitly by 

G1 = A2(CI +$)/R:, 

G2 = A 'C2( C2 + l ) /R$,  

G3 = A '/( A + p2) ,  

a1 = *[&I+ ( p  - all, 

R3  = *(A2+p2)1'2( C1 ++), 

( 3 1 )  

( 3 2 )  

( 3 3 )  

a*= * [ ( 2 a  -p)C*+a] ,  

with eigenvalues represented by gi( y+,) or, equivalently, by g i ( o , . M ) .  
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3. Initial conditions 

3.1. Thermal radiation 

Radiation in thermal equilibrium at temperature T R  = ( ICpR)-' is described by the 

If at t = 0 the atom is in a definite state IM) and the phonons are thermalised then 
for t > 0 the expectation value of S 3 ( t )  is 

W 

as follows from equations (13), (23) and (30) .  . . (33). The average energy of the 
atom is of course 4S3(  t))aR,M. 

Here and in later sections we add suffixes to ( S 3 ( t ) )  to indicate the initial conditions 
of field and atom. 

When the atom is also initially in thermal equilibrium, at temperature TA = ( 
its density matrix is given by 

and the joint density matrix of the system is 

The expression for ( S , (  t ) )  when t > 0 is then 

3.2. Coherent radiation 

A coherent state (2) of the radiation field is defined as an eigenstate of the destruction 
operator a. It has the normalised form 

where the eigenvalue 2 is an arbitrary complex number. The mean number of quanta 
in the state 12) is given by 

v = (Z la+aJZ)  = 1 ~ 1 ' .  (41) 
If at t = 0 the atom is in state IM) and the radiation is coherent with average phonon 

number U then at later times the expectation value of S 3 ( t )  is expressed by 
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4. Analysis of < S3( r ) )  

The eigenvalues Y ~ , ~  of the operator Cm = u ta  + mS3 given by Y , , ~  = n + M m  satisfy 
the relations 

(43) 

Wn, -1 /2  = @n-m,1/2 (44) 

g ( ~ n , - 1 / 2 )  = g ( u n - m , l / A *  (45) 

1 
Yn, -1 /2  = Y n - m , 1 / 2  = n-zm.  

Hence the eigenvalue of Cl satisfies 

which in turn implies that 

The index m depends upon the specific model. Here we keep the discussion general. 
The above equalities and equations ( 3 9 ,  (36), (39) and (42) lead to the following 
expressions for ( S3( t ) )  

(S3(t))pR,-1,2 = -4[h,(t) + 11, 

(sdt)),,,,,,, = +3[empRhlit) + 11, 

(46a) 

(46b) 

where 

and 

By inspection we find that 

hl(O) = 0, h,( t )  0, ( S 3 ( o ) ) p R p A  =-$ tanh($PAE). 

The restrictions implied by the above equations lead to the following observations. 
(i) If PA& > mPR then ( S 3 ( 0 ) )  is the minimum value of ( S 3 ( t ) ) .  
(ii) If PA& < mPR then (S3(0)) is the maximum value of ( S 3 ( t ) ) .  
(iii) If PA& = mPR then ( S 3 ( t ) ) = ( S 3 ( 0 ) )  which shows that ( S 3 ( t ) >  does not change 

with time. There are two distinct ways in which the conditions PA& = mPR can be met. 
If E = m and PA = PR, the atom and the field are at the same temperature at t = 0 and 
remain in thermal equilibrium at later times. If PA # PR and E # m but PA& = mPR, 
( S 3 ( t ) )  is still a constant. This second possibility implies that even though the atom 
and the field are not at the same temperature at t = 0, ( S 3 ( t ) >  is a constant in spite of 
the interaction. 

We now consider in turn each of the three models constructed in 0 2, and examine 
the special features that arise in the dynamics of ( S 3 ( t ) ) .  
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Model 1. In this model the atomic transition is mediated by a single phonon (m = 1) 
and the following relations apply. 

(49a, b )  

W , , - l / Z = W n - 1 , 1 / 2 = p ( n + 5 ) ,  (49c) 

g(On,-1/2) = g(mn-1,+1/2) =4tn/(n + 5)' ( 4 9 4  

5=-; -a /p=A2/4p2.  (50) 

1 c, = c1= uta + s3, Yn,-1/2 = Yn-1,1/2 = n -I, 

in which 

It is convenient to define the scaled time T = p? so that mn-1,2f = ( n  + 5)~. In terms of 
these new variables we get from equations (47) and (48) 

Inspection of hl( T )  and h2( T )  enables the identification of the periodic features of 
this model. If 5 is a rational number of the form 6 = J / K  then each term in the series 
representations of hl and h2 is periodic in T with period 27%. Since h, and h2 are 
periodic functions of T exact revivals of ( S 3 ( 7 ) )  occur with period 2 d C  

h1(.r) can also be written in the form 

hl ( T )  = 45( 1 - e - @ R )  a ' d t' lor' d t" P( t") 
a& 0 

in which 

COS 57 - e-pR COS( 5 - 1 ) T  

f l = O  1+e247-2eP~cos  T ' 

30 

P( T )  = C e -"@R cos( n + 5) T = 

(53) 

(54) 

The series for h2( T )  is not exactly summable. However, when the mean phonon number 
in the field, v is large, the series can be summed approximately using the saddlepoint 
approximation which is accurate to order 11 v. The resulting estimate is 

h 2 ( T )  = - ( 4 5 / v ) [ l - e x p ( - 2 v s i n 2 ~ ~ )  cos(vsin T+T[-T)].  ( 5 5 )  

This expression clearly shows that h2 collapses rapidly if v is large, but revives 
eventually. The revivals are exact if 5 is a rational number. Even when 5 is not a 
rational number, partial revivals will occur because of revivals of the envelope function 
exp(-2v sin2 ;T) .  

Model 2. In this model, the interaction of the atom with the radiation field is mediated 
by two oscillator quanta (m = 2) and the following relations apply. 

c , = c ~ = u + u + ~ s , ,  Yfl,-1/2 = Yn-2,1/2 = n - 1, ( 5 6 4  b )  

Wn,-1/2= %-z,z/z  =[(4a2+A2)/4aI(n- 61, 
( 5 6 ~  d) 1 2 2  g(wfl.-l/z) =g(Wfl-2,1/2) =[A2a2 / (a2+sA ) l [n(n-l) / (n-5)21 
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in which 

5 = A2/(4a2 + A2) .  (57) 

In terms of a scaled time defined by 7=[(4a2+A2)/4a]t ,  so that ~ , , - ~ , ~ t = ( n - [ ) ~ ,  
we get from equations (47) and (48) 

Inspection of h1(7) and h2(7) shows that if 5 is a rational number of the form J / K  
then hl and h2 are periodic with period 27rK since each term in the series is a periodic 
function of T. Thus exact revivals and decay of ( S 3 ( 7 ) )  will occur with period 27rK. 

h , ( ~ )  can also be written in the convenient form 

h2 can be written in the form 

4A2a2 v" (25-l)n-52 + (A2+a2)2e-y Loz (n-5)' [COS( n - 5 ) T -  13. 

Summing of the first series exactly and estimation of the second series by saddlepoint 
approximation leads to the expression 

h2( T )  = [A  'a 2/ ($A + a ')'I{ exp( -2 v sin2 $ T )  cos( v sin T - 5.) - 1 

+[(25- 1)/~][exp(-2v sin2 ;T)  cos(v sin 7-557- T )  - I]} 

+ O( 1/ 2). (64) 

The periodic character of exp(-23v sin2 $7) implies that even though h2(7 )  collapses 
rapidly for large v and small T revivals of h2( T )  occur for all values of 5. The revivals 
can be total or partial depending upon whether 5 is a rational number or not. 

For the special value 5 = 1 corresponding to the choice of parameters p = 0, A = *2a 
referred to in an earlier paper (Sukumar and Buck 1981), the following expressions 
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result 

h2( T) = [exp(-2u sin’ 57) cos( v sin T - $ T )  - 11 
+(1/4v2)[exp(-2u s in’h~)  cos(v sin T - $ T ) - I ] + o ( ~ / u ~ ) .  (66) 

Model 3. In this model, single oscillator quanta (m = 1) mediate the atom-field 
interaction leading to the following equations. 

The series hl  and h2 can be summed exactly to give 

h2(7 )  =[A2/(A2+p2)][exp(-2v s in ’ t~ )  cos(v s in (T)+~) - l ] .  (71) 

These expressions clearly show that hl and h2 are periodic in T with period 27r leading 
to exact revivals and decay in the dynamics of S 3 ( t ) .  

5. Conclusions 

For thermal initial conditions the following results are common to the three models. 
(i) For special values of E ,  the resonance tuning parameter, ( S , ( t ) )  can remain 

constant in time even though the atom and the radiation field may not be at the same 
temperature at t = 0. 

(ii) (S3(0))pRpA is an extremum value. ( S 3 ( t ) )  does not oscillate about ( S , ( O ) )  and 
can reach the value (S,(O)) only at exact revivals of the system. 

(iii) The atom and the radiation field never come to equilibrium through the 
interaction term in the Hamiltonian if at t = 0 they are not already in thermal equili- 
brium. 
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The model Hamiltonians were so constructed that the expectation values in these 
models, for different initial conditions, show periodic revival and decay. Our examples 
clearly show that revivals and decay occur for both coherent state and thermal initial 
conditions of the field. 
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